Root responses to legume plants integrate information on nitrogen availability and neighbour identity

Sattler, Julia and Bartelheimer, Maik (2018) Root responses to legume plants integrate information on nitrogen availability and neighbour identity. BASIC AND APPLIED ECOLOGY, 27. pp. 51-60. ISSN 1439-1791, 1618-0089

Full text not available from this repository. (Request a copy)

Abstract

Rhizobial symbiosis is known to increase the nitrogen availability in the rhizosphere of legumes. Therefore, it has been hypothesized that other plants' roots should forage towards legume neighbours, but avoid non-legume neighbours. Yet, root distribution responding to legume plants as opposed to non-legumes has not yet been rigorously tested and might well be subject to integration of multiple environmental cues. In this study, wedevised an outdoor mesocosm experiment to examine root distributions of the two plant species Pilosella officinarum and Arenaria serpyllifolia in a two-factorial design. While one factor was 'neighbour identity', where plants were exposed to different legume or non-legume neighbours, the other factor was 'nitrogen supply'. In the latter the nutrient-poor soil was supplemented with either nitrogen-free or with nitrogen-containing fertilizer. Unexpectedly, of all treatments that included a legume neighbour (eight different species or factor combinations), we found merely one case of root aggregation towards a legume neighbour (P. officinarum towards Medicago minima under nitrogen-fertilized conditions). In this very treatment, also P. officinarum root-shoot allocation was strongly increased, indicating that neighbour recognition is coupled with a contesting strategy. Considering the various response modes of the tested species towards the different legume and non-legume neighbours, we can conclude that roots integrate information on neighbour identity and resource availability in a complex manner. Especially the integration of neighbour identity in root decisions must be a vital aptitude for plants to cope with their complex biotic and abiotic environment in the field. (C) 2018 Gesellschaft fur Okologie. Published by Elsevier GmbH. All rights reserved.

Item Type: Article
Uncontrolled Keywords: KIN RECOGNITION; COMPETITION; ALLOCATION; NODULATION; NUTRIENTS; MELILOTI; ECOLOGY; SYSTEM; Facilitation; Information integration; Intercropping; Legume; Mesocosm experiment; Neighbour recognition; Plant-plant interactions; Root aggregation; Root distribution; Root foraging
Subjects: 500 Science > 570 Life sciences
Divisions: Biology, Preclinical Medicine > Institut für Pflanzenwissenschaften
Biology, Preclinical Medicine > Institut für Pflanzenwissenschaften > Lehrstuhl für Botanik
Depositing User: Dr. Gernot Deinzer
Date Deposited: 05 Mar 2020 09:44
Last Modified: 05 Mar 2020 09:44
URI: https://pred.uni-regensburg.de/id/eprint/14954

Actions (login required)

View Item View Item