Perspective: Theory of quantum transport in molecular junctions

Thoss, Michael and Evers, Ferdinand (2018) Perspective: Theory of quantum transport in molecular junctions. JOURNAL OF CHEMICAL PHYSICS, 148 (3): 030901. ISSN 0021-9606, 1089-7690

Full text not available from this repository. (Request a copy)

Abstract

Molecular junctions, where single molecules are bound to metal or semiconductor electrodes, represent a unique architecture to investigate molecules in a distinct nonequilibrium situation and, in a broader context, to study basic mechanisms of charge and energy transport in a many-body quantum system at the nanoscale. Experimental studies of molecular junctions have revealed a wealth of interesting transport phenomena, the understanding of which necessitates theoretical modeling. The accurate theoretical description of quantum transport in molecular junctions is challenging because it requires methods that are capable to describe the electronic structure and dynamics of molecules in a condensed phase environment out of equilibrium, in some cases with strong electron-electron and/or electronic-vibrational interaction. This perspective discusses recent progress in the theory and simulation of quantum transport in molecular junctions. Furthermore, challenges are identified, which appear crucial to achieve a comprehensive and quantitative understanding of transport in these systems. Published by AIP Publishing.

Item Type: Article
Uncontrolled Keywords: DENSITY-FUNCTIONAL THEORY; NEGATIVE DIFFERENTIAL RESISTANCE; ELECTRON-TUNNELING SPECTROSCOPY; FRANCK-CONDON BLOCKADE; CURRENT-INDUCED FORCES; SPIN-ORBIT TORQUE; SINGLE-MOLECULE; CHARGE-TRANSPORT; 1ST-PRINCIPLES CALCULATIONS; RENORMALIZATION-GROUP;
Subjects: 500 Science > 530 Physics
Divisions: Physics > Institute of Theroretical Physics > Chair Professor Grifoni > Group Ferdinand Evers
Depositing User: Dr. Gernot Deinzer
Date Deposited: 24 Mar 2020 08:08
Last Modified: 24 Mar 2020 08:08
URI: https://pred.uni-regensburg.de/id/eprint/15187

Actions (login required)

View Item View Item