Floquet spin states in graphene under ac-driven spin-orbit interaction

Lopez, A. and Sun, Z. Z. and Schliemann, J. (2012) Floquet spin states in graphene under ac-driven spin-orbit interaction. PHYSICAL REVIEW B, 85 (20): 205428. ISSN 1098-0121, 1550-235X

Full text not available from this repository. (Request a copy)

Abstract

We study the role of periodically driven time-dependent Rashba spin-orbit coupling (RSOC) on a monolayer graphene sample. After recasting the originally 4 x 4 system of dynamical equations as two time-reversal related two-level problems, the quasienergy spectrum and the related dynamics are investigated via various techniques and approximations. In the static case, the system is gapped at the Dirac point. The rotating wave approximation (RWA) applied to the driven system unphysically preserves this feature, while the Magnus-Floquet approach as well as a numerically exact evaluation of the Floquet equation show that this gap is dynamically closed. In addition, a sizable oscillating pattern of the out-of-plane spin polarization is found in the driven case for states that are completely unpolarized in the static limit. Evaluation of the autocorrelation function shows that the original uniform interference pattern corresponding to time-independent RSOC gets distorted. The resulting structure can be qualitatively explained as a consequence of the transitions induced by the ac driving among the static eigenstates, i.e., these transitions modulate the relative phases that add up to give the quantum revivals of the autocorrelation function. Contrary to the static case, in the driven scenario, quantum revivals (suppressions) are correlated to spin-up (down) phases.

Item Type: Article
Uncontrolled Keywords: ;
Subjects: 500 Science > 530 Physics
Divisions: Physics > Institute of Theroretical Physics
Physics > Institute of Theroretical Physics > Chair Professor Grifoni > Group John Schliemann
Depositing User: Dr. Gernot Deinzer
Date Deposited: 14 May 2020 05:03
Last Modified: 14 May 2020 05:03
URI: https://pred.uni-regensburg.de/id/eprint/18739

Actions (login required)

View Item View Item