Spin-channel Keldysh field theory for weakly interacting quantum dots

Smirnov, Sergey and Grifoni, Milena (2012) Spin-channel Keldysh field theory for weakly interacting quantum dots. PHYSICAL REVIEW B, 85 (19): 195310. ISSN 1098-0121,

Full text not available from this repository. (Request a copy)

Abstract

We develop a low-energy nonequilibrium field theory for weakly interacting quantum dots. The theory is based on the Keldysh field integral in the spin channel of the quantum dot described by the single-impurity Anderson Hamiltonian. The effective Keldysh action is a functional of the Hubbard-Stratonovich magnetization field decoupling the quantum dot spin channel. We expand this action up to the second order with respect to the magnetization field, which allows one to describe nonequilibrium interacting quantum dots at low temperatures and weak electron-electron interactions, up to the contacts-dot coupling energy. Besides its simplicity, an additional advantage of the theory is that it correctly describes the unitary limit, giving the correct result for the conductance maximum. Thus our theory establishes an alternative simple method relevant for investigation of weakly interacting nonequilibrium nanodevices.

Item Type: Article
Uncontrolled Keywords: ANDERSON MODEL; MIXED-VALENCE; EQUILIBRIUM; STATES; APPROXIMATION; TRANSPORT; SYSTEMS;
Subjects: 500 Science > 530 Physics
Divisions: Physics > Institute of Theroretical Physics
Physics > Institute of Theroretical Physics > Chair Professor Grifoni > Group Milena Grifoni
Depositing User: Dr. Gernot Deinzer
Date Deposited: 14 May 2020 05:31
Last Modified: 14 May 2020 05:31
URI: https://pred.uni-regensburg.de/id/eprint/18747

Actions (login required)

View Item View Item