Direct correlation of crystal structure and optical properties in wurtzite/zinc-blende GaAs nanowire heterostructures

Heiss, Martin and Conesa-Boj, Sonia and Ren, Jun and Tseng, Hsiang-Han and Gali, Adam and Rudolph, Andreas and Uccelli, Emanuele and Peiro, Francesca and Ramon Morante, Joan and Schuh, Dieter and Reiger, Elisabeth and Kaxiras, Efthimios and Arbiol, Jordi and Fontcuberta i Morral, Anna (2011) Direct correlation of crystal structure and optical properties in wurtzite/zinc-blende GaAs nanowire heterostructures. PHYSICAL REVIEW B, 83 (4): 045303. ISSN 2469-9950, 2469-9969

Full text not available from this repository. (Request a copy)

Abstract

A method for the direct correlation at the nanoscale of structural and optical properties of single GaAs nanowires is reported. Nanowires consisting of 100% wurtzite and nanowires presenting zinc-blende/wurtzite polytypism are investigated by photoluminescence spectroscopy and transmission electron microscopy. The photoluminescence of wurtzite GaAs is consistent with a band gap of 1.5 eV. In the polytypic nanowires, it is shown that the regions that are predominantly composed of either zinc-blende or wurtzite phase show photoluminescence emission close to the bulk GaAs band gap, while regions composed of a nonperiodic superlattice of wurtzite and zinc-blende phases exhibit a redshift of the photoluminescence spectra as low as 1.455 eV. The dimensions of the quantum heterostructures are correlated with the light emission, allowing us to determine the band alignment between these two crystalline phases. Our first-principles electronic structure calculations within density functional theory, employing a hybrid-exchange functional, predict band offsets and effective masses in good agreement with experimental results.

Item Type: Article
Uncontrolled Keywords: INDIUM-PHOSPHIDE NANOWIRES; III-V NANOWIRES; SEMICONDUCTOR NANOWIRES; SILICON NANOWIRES; BUILDING-BLOCKS; DEVICES; GROWTH; SUPERLATTICES; ZINCBLENDE;
Subjects: 500 Science > 530 Physics
Divisions: Physics > Institute of Experimental and Applied Physics > Chair Professor Huber > Group Rupert Huber
Physics > Institute of Experimental and Applied Physics > Chair Professor Huber > Group Dominique Bougeard
Depositing User: Dr. Gernot Deinzer
Date Deposited: 29 Jun 2020 06:09
Last Modified: 29 Jun 2020 06:09
URI: https://pred.uni-regensburg.de/id/eprint/21389

Actions (login required)

View Item View Item