Borsanyi, Szabolcs and Duerr, Stephan and Fodor, Zoltan and Krieg, Stefan and Schaefer, Andreas and Scholz, Enno E. and Szabo, Kalman K. (2013) SU(2) chiral perturbation theory low-energy constants from 2+1 flavor staggered lattice simulations. PHYSICAL REVIEW D, 88 (1): 014513. ISSN 2470-0010, 2470-0029
Full text not available from this repository. (Request a copy)Abstract
We extract the next-to-leading-order low-energy constants l(3) and l(4) of SU(2) chiral perturbation theory, based on precise lattice data for the pion mass and decay constant on ensembles generated by the Wuppertal-Budapest Collaboration for QCD thermodynamics. These ensembles feature 2 + 1 flavors of two-fold stout-smeared dynamical staggered fermions combined with Symanzik glue, with pion masses varying from 135 to 435 MeV, lattice scales between 0.7 and 2.0 GeV, while m(s) is kept fixed at its physical value. Moderate taste splittings and the scale being set through the pion decay constant allow us to restrict ourselves to the taste pseudoscalar state and to use formulas from continuum chiral perturbation theory. Finally, by dropping the data points near 135 MeV from the fits, we can explore the range of pion masses that is needed in SU(2) chiral perturbation theory to reliably extrapolate to the physical point.
| Item Type: | Article |
|---|---|
| Uncontrolled Keywords: | PARTICLE PHYSICS; MASSES; QCD; QUARKS; |
| Subjects: | 500 Science > 530 Physics |
| Divisions: | Physics > Institute of Theroretical Physics |
| Depositing User: | Dr. Gernot Deinzer |
| Date Deposited: | 06 Apr 2020 07:35 |
| Last Modified: | 06 Apr 2020 07:35 |
| URI: | https://pred.uni-regensburg.de/id/eprint/16356 |
Actions (login required)
![]() |
View Item |

