Alkaline poly(ethylene glycol)-based hydrogels for a potential use as bioactive wound dressings

Koehler, Julia and Verheyen, Leonie and Hedtrich, Sarah and Brandl, Ferdinand P. and Goepferich, Achim M. (2017) Alkaline poly(ethylene glycol)-based hydrogels for a potential use as bioactive wound dressings. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 105 (12). pp. 3360-3368. ISSN 1549-3296, 1552-4965

Full text not available from this repository. (Request a copy)

Abstract

The number of patients with chronic wounds is increasing constantly in today's aging society. However, little work is done so far tackling the associated disadvantageous shift of the wound pH. In our study, we developed two different approaches on pH-modulating wound dressing materials, namely, bioactive interpenetrating polymer network hydrogels based on poly(ethylene glycol) diacrylate/N-vinylimidazole/alginate (named VIx) and poly(ethylene glycol) diacrylate/2-dimethylaminoethyl methacrylate/N-carboxyethylchitosan (named DMAEMA(x)). Both formulations showed a good cytocompatibility and wound healing capacity in vitro. The developed dressing materials significantly increased the cell ingrowth in wounded human skin constructs; by 364% and 313% for the VIx and the DMAEMA(x) hydrogel formulation, respectively. Additionally, VIx hydrogels were found to be suitable scaffolds for superficial cell attachment. Our research on the material properties suggests that ionic interactions and hydrogen bonds are the driving forces for the mechanical and swelling properties of the examined hydrogels. High amounts of positively charged amino groups in DMAEMA(x) hydrogels caused increased liquid uptake (around 190%), whereas VIx hydrogels showed a 10-fold higher maximum compressive stress in comparison to hydrogels without ionizable functional groups. (c) 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3360-3368, 2017.

Item Type: Article
Uncontrolled Keywords: ANIMAL-MODEL; PH; SKIN; ALGINATE; CHITOSAN; BEHAVIOR; FILMS; CARE; cell scaffold; chronic wound; human skin construct; pH-responsive hydrogel; wound dressing
Subjects: 600 Technology > 615 Pharmacy
Divisions: Chemistry and Pharmacy > Institute of Pharmacy > Pharmaceutical Technology (Prof. Göpferich)
Depositing User: Dr. Gernot Deinzer
Date Deposited: 14 Dec 2018 13:19
Last Modified: 13 Feb 2019 12:58
URI: https://pred.uni-regensburg.de/id/eprint/1818

Actions (login required)

View Item View Item