Zoepfl, Alexander and Sisakthi, Masoumeh and Eroms, Jonathan and Matysik, Frank-Michael and Strunk, Christoph and Hirsch, Thomas (2016) Signal enhancement in amperometric peroxide detection by using graphene materials with low number of defects. MICROCHIMICA ACTA, 183 (1). pp. 83-90. ISSN 0026-3672, 1436-5073
Full text not available from this repository. (Request a copy)Abstract
Two-dimensional carbon nanomaterials ranging from single-layer graphene to defective structures such as chemically reduced graphene oxide were studied with respect to their use in electrodes and sensors. Their electrochemical properties and utility in terms of fabrication of sensing devices are compared. Specifically, the electrodes have been applied to reductive amperometric determination of hydrogen peroxide. Low-defect graphene (SG) was obtained through mechanical exfoliation of natural graphite, while higher-defect graphenes were produced by chemical vapor deposition (CVDG) and by chemical oxidation of graphite and subsequent reduction (rGO). The carbonaceous materials were mainly characterized by Raman microscopy. They were applied as electrode material and the electrochemical behavior was investigated by chronocoulometry, cyclic voltammetry, electrochemical impedance spectroscopy and amperometry and compared to a carbon disc electrode. It is shown that the quality of the graphene has an enormous impact on the amperometric performance. The use of carbon materials with many defects (like rGO) does not result in a significant improvement in signal compared to a plain carbon disc electrode. The sensitivity is 173 mA center dot M-1 center dot cm(-2) in case of using CVDG which is about 50 times better than that of a plain carbon disc electrode and about 7 times better than that of rGO. The limit of detection for hydrogen peroxide is 15.1 mu M (at a working potential of -0.3 V vs SCE) for CVDG. It is concluded that the application of two-dimensional carbon nanomaterials offers large perspectives in amperometric detection systems due to electrocatalytic effects that result in highly sensitive detection.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | OXIDE; NANOPARTICLES; CARBON; FILMS; NANOSHEETS; GRAPHITE; ROADMAP; Graphene; Reduced graphene oxide; Hydrogen peroxide; Amperometry; Electrical impedance spectroscopy; Chronocoulometry; Cyclic voltammetry; Raman spectroscopy |
Subjects: | 500 Science > 530 Physics 500 Science > 540 Chemistry & allied sciences |
Divisions: | Physics > Institute of Experimental and Applied Physics > Chair Professor Weiss > Group Christoph Strunk Chemistry and Pharmacy > Institut für Analytische Chemie, Chemo- und Biosensorik > Instrumentelle Analytik (Prof. Frank-Michael Matysik) |
Depositing User: | Dr. Gernot Deinzer |
Date Deposited: | 01 Mar 2019 12:36 |
Last Modified: | 07 Mar 2019 10:33 |
URI: | https://pred.uni-regensburg.de/id/eprint/2239 |
Actions (login required)
![]() |
View Item |