Ultrafast Electronic Energy Transfer in an Orthogonal Molecular Dyad

Wiebeler, Christian and Plasser, Felix and Hedley, Gordon J. and Ruseckas, Arvydas and Samuel, Ifor D. W. and Schumacher, Stefan (2017) Ultrafast Electronic Energy Transfer in an Orthogonal Molecular Dyad. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 8 (5). pp. 1086-1092. ISSN 1948-7185,

Full text not available from this repository. (Request a copy)

Abstract

Understanding electronic energy transfer (EET) is an important ingredient in the development of artificial photosynthetic systems and photovoltaic technologies. Although EET is at the heart of these applications and crucially influences their light-harvesting efficiency, the nature of EET over short distances for covalently bound donor and acceptor units is often not well understood. Here we investigate EET in an orthogonal molecular dyad (BODT4), in which simple models fail to explain the very origin of EET. On the basis of nonadiabatic ab initio molecular dynamics calculations and ultrafast fluorescence experiments, we gain detailed microscopic insights into the ultrafast electrovibrational dynamics following photoexcitation. Our analysis offers molecular-level insights into these processes and reveals that it takes place on time scales less than or similar to 100 fs an(d) occurs through an intermediate charge-transfer state.

Item Type: Article
Uncontrolled Keywords: NONADIABATIC DYNAMICS; SHAPED OLIGOFLUORENE; CONJUGATED MATERIALS; SYSTEMS; DENSITY; LUMINESCENCE; TRANSITIONS; RELAXATION; EXCHANGE; PROGRAM;
Subjects: 500 Science > 530 Physics
Divisions: Physics > Institute of Experimental and Applied Physics > Chair Professor Lupton > Group John Lupton
Depositing User: Dr. Gernot Deinzer
Date Deposited: 14 Dec 2018 13:00
Last Modified: 20 Feb 2019 10:37
URI: https://pred.uni-regensburg.de/id/eprint/239

Actions (login required)

View Item View Item