Effects of renal denervation on renal pelvic contractions and connexin expression in rats

Koenen, A. and Steinbach, A. and Schaper, K. and Zimmermann, U. and Miehe, B. and Kurt, B. and Rettig, R. and Grisk, O. (2016) Effects of renal denervation on renal pelvic contractions and connexin expression in rats. ACTA PHYSIOLOGICA, 216 (2). pp. 240-253. ISSN 1748-1708, 1748-1716

Full text not available from this repository. (Request a copy)

Abstract

Aims: The renal pelvis shows spontaneous rhythmic contractile activity. We assessed to what extent this activity depends on renal innervation and studied the role of connexins in pelvic contractions. Methods: Rats underwent unilateral renal denervation or renal transplantation. Renal pelvic pressure and diuresis were measured in vivo. Spontaneous and agonist-induced contractions of isolated renal pelves were investigated by wire myography. Rat and human renal pelvic connexin mRNA abundances and connexin localization were studied by real-time PCR and immunofluorescence respectively. Results: Renal denervation or transplantation increased renal pelvic pressure in vivo by about 60 and 150%, respectively, but did not significantly affect pelvic contraction frequency. Under in vitro conditions, isolated pelvic preparations from innervated or denervated kidneys showed spontaneous contractions. Pelves from denervated kidneys showed about 50% higher contraction frequencies than pelves from innervated kidneys, whereas contraction force was similar in pelves from denervated and innervated kidneys. There was no denervation-induced supersensitivity to noradrenaline or endothelin-1. Renal denervation did not increase pelvic connexin37, 40, 43 or 45 mRNA abundances. Gap junction blockade had no effect on spontaneous pelvic contractile activity. Conclusions: The denervation-induced effect on pelvic pressure may be the consequence of the enhanced diuresis. The mechanisms underlying the denervation-induced effects on pelvic contraction frequency remain unknown. Our data rule out a major role for two important candidates, by showing that renal denervation neither induced supersensitivity to contractile agonists nor increased connexin mRNA abundance in the pelvic wall.

Item Type: Article
Uncontrolled Keywords: TREATMENT-RESISTANT HYPERTENSION; GAP-JUNCTIONS; SYMPATHETIC DENERVATION; PYELOURETERAL MOTILITY; URETERAL PERISTALSIS; MIMETIC PEPTIDES; NEURAL-CONTROL; KIDNEY; NERVES; ACTIVATION; connexins; humans; noradrenaline; rats; renal denervation; renal nerves
Subjects: 500 Science > 570 Life sciences
Divisions: Biology, Preclinical Medicine > Institut für Physiologie
Depositing User: Dr. Gernot Deinzer
Date Deposited: 14 Mar 2019 11:12
Last Modified: 14 Mar 2019 11:12
URI: https://pred.uni-regensburg.de/id/eprint/2498

Actions (login required)

View Item View Item