QUADRATIC AND SYMMETRIC BILINEAR FORMS ON MODULES WITH UNIQUE BASE OVER A SEMIRING

Izhakian, Zur and Knebusch, Manfred and Rowen, Louis (2016) QUADRATIC AND SYMMETRIC BILINEAR FORMS ON MODULES WITH UNIQUE BASE OVER A SEMIRING. DOCUMENTA MATHEMATICA, 21. pp. 773-808. ISSN 1431-0643,

Full text not available from this repository. (Request a copy)

Abstract

We study quadratic forms on free modules with unique base, the situation that arises in tropical algebra, and prove the analog of Witt's Cancelation Theorem. Also, the tensor product of an indecomposable bilinear module (U,gamma) with an indecomposable quadratic module (V, q) is indecomposable, with the exception of one case, where two indecomposable components arise.

Item Type: Article
Uncontrolled Keywords: COMMUTATIVE RING; CMC SUBSETS; ALGEBRA; VALUATIONS; ANTIRINGS; MATRICES; Semirings; (semi) modules; bilinear forms; quadratic forms; symmetric forms; orthogonal decomposition
Subjects: 500 Science > 510 Mathematics
Divisions: Mathematics > Professoren und akademische Räte im Ruhestand > Prof. Dr. Manfred Knebusch
Depositing User: Dr. Gernot Deinzer
Date Deposited: 21 Mar 2019 11:38
Last Modified: 21 Mar 2019 11:38
URI: https://pred.uni-regensburg.de/id/eprint/2608

Actions (login required)

View Item View Item