Izhakian, Zur and Knebusch, Manfred and Rowen, Louis (2016) QUADRATIC AND SYMMETRIC BILINEAR FORMS ON MODULES WITH UNIQUE BASE OVER A SEMIRING. DOCUMENTA MATHEMATICA, 21. pp. 773-808. ISSN 1431-0643,
Full text not available from this repository. (Request a copy)Abstract
We study quadratic forms on free modules with unique base, the situation that arises in tropical algebra, and prove the analog of Witt's Cancelation Theorem. Also, the tensor product of an indecomposable bilinear module (U,gamma) with an indecomposable quadratic module (V, q) is indecomposable, with the exception of one case, where two indecomposable components arise.
| Item Type: | Article |
|---|---|
| Uncontrolled Keywords: | COMMUTATIVE RING; CMC SUBSETS; ALGEBRA; VALUATIONS; ANTIRINGS; MATRICES; Semirings; (semi) modules; bilinear forms; quadratic forms; symmetric forms; orthogonal decomposition |
| Subjects: | 500 Science > 510 Mathematics |
| Divisions: | Mathematics > Professoren und akademische Räte im Ruhestand > Prof. Dr. Manfred Knebusch |
| Depositing User: | Dr. Gernot Deinzer |
| Date Deposited: | 21 Mar 2019 11:38 |
| Last Modified: | 21 Mar 2019 11:38 |
| URI: | https://pred.uni-regensburg.de/id/eprint/2608 |
Actions (login required)
![]() |
View Item |

