Glomerular expression pattern of long non-coding RNAs in the type 2 diabetes mellitus BTBR mouse model

Reichelt-Wurm, Simone and Wirtz, Tobias and Chittka, Dominik and Lindenmeyer, Maja and Reichelt, Robert M. and Beck, Sebastian and Politis, Panagiotis and Charonis, Aristidis and Kretz, Markus and Huber, Tobias B. and Liu, Shuya and Banas, Bernhard and Banas, Miriam C. (2019) Glomerular expression pattern of long non-coding RNAs in the type 2 diabetes mellitus BTBR mouse model. SCIENTIFIC REPORTS, 9: 9765. ISSN 2045-2322,

Full text not available from this repository. (Request a copy)

Abstract

The prevalence of type 2 diabetes mellitus (T2DM) and by association diabetic nephropathy (DN) will continuously increase in the next decades. Nevertheless, the underlying molecular mechanisms are largely unknown and studies on the role of new actors like long non-coding RNAs (lncRNAs) barely exist. In the present study, the inherently insulin-resistant mouse strain "black and tan, brachyuric" (BTBR) served as T2DM model. While wild-type mice do not exhibit pathological changes, leptin-deficient diabetic animals develop a severe T2DM accompanied by a DN, which closely resembles the human phenotype. We analyzed the glomerular expression of lncRNAs from wild-type and diabetic BTBR mice (four, eight, 16, and 24 weeks) applying the "GeneChip Mouse Whole Transcriptome 1.0 ST" array. This microarray covered more lncRNA gene loci than any other array before. Over the observed time, our data revealed differential expression patterns of 1746 lncRNAs, which markedly differed from mRNAs. We identified protein-coding and non-coding genes, that were not only co-located but also co-expressed, indicating a potentially cis-acting function of these lncRNAs. In vitro-experiments strongly suggested a cell-specific expression of these lncRNA-mRNA-pairs. Additionally, protein-coding genes, being associated with significantly regulated lncRNAs, were enriched in various biological processes and pathways, that were strongly linked to diabetes.

Item Type: Article
Uncontrolled Keywords: GENE; IDENTIFICATION; NEPHROPATHY; REVEALS; EVOLUTION; CATALOG; DISEASE; GENOME; CANCER; INJURY;
Subjects: 500 Science > 570 Life sciences
600 Technology > 610 Medical sciences Medicine
Divisions: Medicine > Abteilung für Nephrologie
Biology, Preclinical Medicine > Institut für Biochemie, Genetik und Mikrobiologie
Biology, Preclinical Medicine > Institut für Biochemie, Genetik und Mikrobiologie > Lehrstuhl für Biochemie I
Biology, Preclinical Medicine > Institut für Biochemie, Genetik und Mikrobiologie > Lehrstuhl für Biochemie I > Prof. Dr. Gunter Meister
Biology, Preclinical Medicine > Institut für Biochemie, Genetik und Mikrobiologie > Lehrstuhl für Mikrobiologie (Archaeenzentrum)
Biology, Preclinical Medicine > Institut für Biochemie, Genetik und Mikrobiologie > Lehrstuhl für Mikrobiologie (Archaeenzentrum) > Prof. Dr. Dina Grohmann
Depositing User: Dr. Gernot Deinzer
Date Deposited: 03 Apr 2020 07:13
Last Modified: 03 Apr 2020 07:13
URI: https://pred.uni-regensburg.de/id/eprint/26652

Actions (login required)

View Item View Item