Chermisi, Milena and Valdinoci, Enrico (2009) Fibered nonlinearities for p(x)-Laplace equations. ADVANCES IN CALCULUS OF VARIATIONS, 2 (2). pp. 185-205. ISSN 1864-8258, 1864-8266
Full text not available from this repository. (Request a copy)Abstract
In R-m Rn-m, endowed with coordinates X = (x, y), we consider the PDE -div(alpha(x)vertical bar del u(X)vertical bar(p(x)-2)del u(X)) = f(x, u(X)). We prove a geometric inequality and a symmetry result.
| Item Type: | Article |
|---|---|
| Uncontrolled Keywords: | SEMILINEAR ELLIPTIC-EQUATIONS; ELECTRORHEOLOGICAL FLUIDS; VARIABLE EXPONENT; DIRICHLET PROBLEM; POSITIVE SOLUTIONS; HOLDER CONTINUITY; SOBOLEV SPACES; DE-GIORGI; R-N; REGULARITY; Degenerate PDEs; geometric analysis; rigidity and symmetry results |
| Subjects: | 500 Science > 510 Mathematics |
| Divisions: | Mathematics |
| Depositing User: | Dr. Gernot Deinzer |
| Date Deposited: | 18 Sep 2020 07:22 |
| Last Modified: | 18 Sep 2020 07:22 |
| URI: | https://pred.uni-regensburg.de/id/eprint/29137 |
Actions (login required)
![]() |
View Item |

