Fibered nonlinearities for p(x)-Laplace equations

Chermisi, Milena and Valdinoci, Enrico (2009) Fibered nonlinearities for p(x)-Laplace equations. ADVANCES IN CALCULUS OF VARIATIONS, 2 (2). pp. 185-205. ISSN 1864-8258, 1864-8266

Full text not available from this repository. (Request a copy)

Abstract

In R-m Rn-m, endowed with coordinates X = (x, y), we consider the PDE -div(alpha(x)vertical bar del u(X)vertical bar(p(x)-2)del u(X)) = f(x, u(X)). We prove a geometric inequality and a symmetry result.

Item Type: Article
Uncontrolled Keywords: SEMILINEAR ELLIPTIC-EQUATIONS; ELECTRORHEOLOGICAL FLUIDS; VARIABLE EXPONENT; DIRICHLET PROBLEM; POSITIVE SOLUTIONS; HOLDER CONTINUITY; SOBOLEV SPACES; DE-GIORGI; R-N; REGULARITY; Degenerate PDEs; geometric analysis; rigidity and symmetry results
Subjects: 500 Science > 510 Mathematics
Divisions: Mathematics
Depositing User: Dr. Gernot Deinzer
Date Deposited: 18 Sep 2020 07:22
Last Modified: 18 Sep 2020 07:22
URI: https://pred.uni-regensburg.de/id/eprint/29137

Actions (login required)

View Item View Item