Ammann, Bernd and Humbert, E. (2008) The spinorial tau-invariant and 0-dimensional surgery. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 624. pp. 27-50. ISSN 0075-4102, 1435-5345
Full text not available from this repository. (Request a copy)Abstract
Let M be a compact manifold with a metric g and with a fixed spin structure chi. Let lambda(+)(1) be the first non-negative eigenvalue of the Dirac operator on (M, g, chi). We set tau(M, chi) := sup inf lambda(+)(1)(g) where the infimum runs over all metrics g of volume 1 in a conformal class [g(0)] on M and where the supremum runs over all conformal classes [g(0)] on M. Let (M-#, chi(#)) be obtained from (M, chi) by 0-dimensional surgery. We prove that tau(MK#, chi(#)) >= tau(M, chi). As a corollary we can calculate tau(M, chi) for any Riemann surface M.
| Item Type: | Article |
|---|---|
| Uncontrolled Keywords: | SIMPLY CONNECTED MANIFOLDS; YAMABE INVARIANT; DIRAC OPERATOR; SCALAR CURVATURE; GREATER-THAN; EIGENVALUE; 3-MANIFOLDS; METRICS; RP3; |
| Subjects: | 500 Science > 510 Mathematics |
| Divisions: | Mathematics > Prof. Dr. Bernd Ammann |
| Depositing User: | Dr. Gernot Deinzer |
| Date Deposited: | 21 Oct 2020 05:50 |
| Last Modified: | 21 Oct 2020 05:50 |
| URI: | https://pred.uni-regensburg.de/id/eprint/30106 |
Actions (login required)
![]() |
View Item |

