Skeletal abnormalities and extra-skeletal ossification in mice with restricted Gs alpha deletion caused by a renin promoter-Cre transgene

Castrop, Hayo and Oppermann, Mona and Mizel, Diane and Huang, Yuning and Faulhaber-Walter, Robert and Weiss, Yvonne and Weinstein, Lee S. and Chen, Min and Germain, Stephane and Lu, Huiyan and Ragland, Dan and Schimel, Daniel M. and Schnermann, Jurgen (2007) Skeletal abnormalities and extra-skeletal ossification in mice with restricted Gs alpha deletion caused by a renin promoter-Cre transgene. CELL AND TISSUE RESEARCH, 330 (3). pp. 487-501. ISSN 0302-766X,

Full text not available from this repository. (Request a copy)

Abstract

We have recently generated a transgenic mouse line (termed hRen-Cre) that expresses Cre-recombinase under the control of a 12.2-kb fragment of the human renin promoter. In the present study, we have crossed hRen-Cre mice with a mouse strain in which exon 1 of the Gnas gene is flanked by loxP sites. Gnas encodes the alpha-subunit of the stimulatory G protein (Gs alpha). Our aim has been to generate a mouse model with locally restricted inactivation of Gs alpha to extend studies of the role of Gs alpha function in vivo. Mice with local Cre-mediated inactivation of Gs alpha (rCre-Gs alpha) are viable and fertile. Their most obvious phenotype consists of marked skeletal malformations of the forelimbs in which computer-tomography scans reveal shortened and fused extremity bones. Extraskeletal ossifications occur in the subcutis and in skeletal muscles associated with the affected long bones. Plasma calcium, phosphate and parathyroid hormone are normal. Skin histology has demonstrated diffuse mineralization and ossification associated with the basal cells of hair follicles. This phenotype in part resembles syndromes in humans associated with loss-of-function of Gs alpha, such as Albright hereditary osteodystrophy and progressive osseous heteroplasia. The renal phenotype of rCre-Gs alpha mice is inconspicuous. Plasma renin concentration, ambient urine osmolarity, and the glomerular filtration rate of rCre-Gs alpha mice do not differ from controls. The absence of measurable functional changes in the renin-angiotensin system indicates insufficient Cre expression in juxtaglomerular granular cells in this strain of mice. Nevertheless, the present report reaffirms the importance of Gs alpha signaling for bone development and the suppression of ectopic ossification.

Item Type: Article
Uncontrolled Keywords: PROGRESSIVE OSSEOUS HETEROPLASIA; STIMULATORY G-PROTEIN; HORMONE RESISTANCE; GNAS GENE; EXPRESSION; PSEUDOHYPOPARATHYROIDISM; MURINE; TISSUE; DEFICIENCY; KNOCKOUT; renin; bone development; ossification; transgene; cre recombinase; mouse (transgenic, hRen-Cre)
Subjects: 500 Science > 570 Life sciences
Divisions: Biology, Preclinical Medicine > Institut für Physiologie
Biology, Preclinical Medicine > Institut für Physiologie > Prof. Dr. Wolf Hayo Castrop
Depositing User: Dr. Gernot Deinzer
Date Deposited: 25 Nov 2020 08:00
Last Modified: 25 Nov 2020 08:00
URI: https://pred.uni-regensburg.de/id/eprint/31824

Actions (login required)

View Item View Item