A weighted L-2-estimate of the Witten spinor in asymptotically Schwarzschild manifolds

Finster, Felix and Kraus, Margarita (2007) A weighted L-2-estimate of the Witten spinor in asymptotically Schwarzschild manifolds. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 59 (5). pp. 943-965. ISSN 0008-414X,

Full text not available from this repository. (Request a copy)

Abstract

We derive a weighted L-2-estimate of the Witten spinor in a complete Riemannian spin manifold (M-n, g) of non-negative scalar curvature which is asymptotically Schwarzschild. The interior geometry of M enters this estimate only via the lowest eigenvalue of the square of the Dirac operator on a conformal compactification of M.

Item Type: Article
Uncontrolled Keywords: POSITIVE ENERGY THEOREM; DIRAC OPERATOR; SCALAR-CURVATURE; FLAT MANIFOLDS; MASS THEOREM; EIGENVALUE; PROOF;
Subjects: 500 Science > 510 Mathematics
Divisions: Mathematics > Prof. Dr. Felix Finster
Depositing User: Dr. Gernot Deinzer
Date Deposited: 01 Dec 2020 08:55
Last Modified: 11 Jan 2021 06:50
URI: https://pred.uni-regensburg.de/id/eprint/32098

Actions (login required)

View Item View Item