Finster, Felix and Kraus, Margarita (2007) A weighted L-2-estimate of the Witten spinor in asymptotically Schwarzschild manifolds. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 59 (5). pp. 943-965. ISSN 0008-414X,
Full text not available from this repository. (Request a copy)Abstract
We derive a weighted L-2-estimate of the Witten spinor in a complete Riemannian spin manifold (M-n, g) of non-negative scalar curvature which is asymptotically Schwarzschild. The interior geometry of M enters this estimate only via the lowest eigenvalue of the square of the Dirac operator on a conformal compactification of M.
| Item Type: | Article |
|---|---|
| Uncontrolled Keywords: | POSITIVE ENERGY THEOREM; DIRAC OPERATOR; SCALAR-CURVATURE; FLAT MANIFOLDS; MASS THEOREM; EIGENVALUE; PROOF; |
| Subjects: | 500 Science > 510 Mathematics |
| Divisions: | Mathematics > Prof. Dr. Felix Finster |
| Depositing User: | Dr. Gernot Deinzer |
| Date Deposited: | 01 Dec 2020 08:55 |
| Last Modified: | 11 Jan 2021 06:50 |
| URI: | https://pred.uni-regensburg.de/id/eprint/32098 |
Actions (login required)
![]() |
View Item |

