Schmidt, Alexander (2007) Some consequences of Wiesend's higher dimensional class field theory. MATHEMATISCHE ZEITSCHRIFT, 256 (4). pp. 731-736. ISSN 0025-5874,
Full text not available from this repository. (Request a copy)Abstract
We use a result of G. Wiesend to establish the relation between the integral singular homology in degree zero and the abelianized tame fundamental group of a regular, connected scheme of finite type over Spec(Z).
| Item Type: | Article |
|---|---|
| Uncontrolled Keywords: | ARITHMETIC SCHEMES; SINGULAR HOMOLOGY; VARIETIES; class field theory; arithmetic schemes; Tame coverings |
| Subjects: | 500 Science > 510 Mathematics |
| Divisions: | Mathematics > Professoren und akademische Räte im Ruhestand > Prof. Dr. Alexander Schmidt |
| Depositing User: | Dr. Gernot Deinzer |
| Date Deposited: | 01 Dec 2020 13:40 |
| Last Modified: | 01 Dec 2020 13:40 |
| URI: | https://pred.uni-regensburg.de/id/eprint/32465 |
Actions (login required)
![]() |
View Item |

