Constant savings rates and quasi-arithmetic population growth under exhaustible resource constraints

Asheim, Geir B. and Buchholz, Wolfgang and Hartwick, John M. and Mitra, Tapan and Withagen, Cees (2007) Constant savings rates and quasi-arithmetic population growth under exhaustible resource constraints. JOURNAL OF ENVIRONMENTAL ECONOMICS AND MANAGEMENT, 53 (2). pp. 213-229. ISSN 0095-0696, 1096-0449

Full text not available from this repository. (Request a copy)

Abstract

In the Dasgupta-Heal-Solow-Stiglitz (DHSS) model of capital accumulation and resource depletion we show the following equivalence: if an efficient path has constant (gross and net of population growth) savings rates, then population growth must be quasi-arithmetic and the path is a maximin or a classical utilitarian optimum. Conversely, if a path is optimal according to maximin or classical utilitarianism (with constant elasticity of marginal utility) under quasi-arithmetic population growth, then the (gross and net of population growth) savings rates converge asymptotically to constants. (c) 2006 Elsevier Inc. All rights reserved.

Item Type: Article
Uncontrolled Keywords: HARTWICKS RULE; INTERTEMPORAL EQUITY; NATURAL RESOURCES; DEPLETION; EFFICIENT; ECONOMY; INCOME; PATHS; quasi-arithmetic population growth; constant savings rates; exhaustible resources; sustainability
Subjects: 300 Social sciences > 330 Economics
Divisions: Business, Economics and Information Systems > Institut für Volkswirtschaftslehre und Ökonometrie > Entpflichtete oder im Ruhestand befindliche Professoren > Lehrstuhl für Finanzwissenschaft, insbesondere Umweltökonomie (Prof. Dr. Wolfgang Buchholz)
Depositing User: Dr. Gernot Deinzer
Date Deposited: 22 Dec 2020 07:11
Last Modified: 22 Dec 2020 07:11
URI: https://pred.uni-regensburg.de/id/eprint/33113

Actions (login required)

View Item View Item