cAMP and in vivo hypoxia induce tob, ifr1, and fos expression in erythroid cells of the chick embryo

Dragon, Stefanie and Offenhauser, Nina and Baumann, Rosemarie (2002) cAMP and in vivo hypoxia induce tob, ifr1, and fos expression in erythroid cells of the chick embryo. AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 282 (4). R1219-R1226. ISSN 0363-6119

Full text not available from this repository. (Request a copy)

Abstract

During avian embryonic development, terminal erythroid differentiation occurs in the circulation. Some of the key events, such as the induction of erythroid 2,3-bisphosphoglycerate (2,3-BPG), carbonic anhydrase (CAII), and pyrimidine 5'-nucleotidase (P5N) synthesis are oxygen dependent (Baumann R, Haller EA, Schoning U, and Weber M, Dev Biol 116: 548-551, 1986; Dragon S and Baumann R, Am J Physiol Regulatory Integrative Comp Physiol 280: R870-R878, 2001; Dragon S, Carey C, Martin K, and Baumann R, J Exp Biol 202: 2787-2795, 1999; Dragon S, Glombitza S, Gotz R, and Baumann R, Am J Physiol Regulatory Integrative Comp Physiol 271: R982-R989, 1996; Dragon S, Hille R, Gotz R, and Baumann R, Blood 91: 3052-3058, 1998; Million D, Zillner P, and Baumann R, Am J Physiol Regulatory Integrative Comp Physiol 261: R1188-R1196, 1991) in an indirect way: hypoxia stimulates the release of norepinephrine (NE)/adenosine into the circulation (Dragon et al., J Exp Biol 202: 2787-2795, 1999; Dragon et al., Am J Physiol Regulatory Integrative Comp Physiol 271: R982-R989, 1996). This leads via erythroid beta-adrenergic/adenosine A(2) receptor activation to a cAMP signal inducing several proteins in a transcription-dependent manner (Dragon et al., Am J Physiol Regulatory Integrative Comp Physiol 271: R982-R989, 1996; Dragon et al., Blood 91: 3052-3058, 1998; Glombitza S, Dragon S, Berghammer M, Pannermayr M, and Baumann R, Am J Physiol Regulatory Integrative Comp Physiol 271: R973-R981, 1996). To understand how the cAMP-dependent processes are initiated, we screened an erythroid cDNA library for cAMP-regulated genes. We detected three genes that were strongly upregulated (>5- fold) by cAMP in definitive and primitive red blood cells. They are homologous to the mammalian Tob, Ifr1, and Fos proteins. In addition, the genes are induced in the intact embryo during short-term hypoxia. Because the genes are regulators of proliferation and differentiation in other cell types, we suggest that cAMP might promote general differentiating processes in erythroid cells, thereby allowing adaptive modulation of the latest steps of erythroid differentiation during developmental hypoxia.

Item Type: Article
Uncontrolled Keywords: NERVE GROWTH-FACTOR; RED-BLOOD-CELLS; BONE-MARROW; PROTEIN; GENE; CLONING; MEMBER; FAMILY; HEMOGLOBIN; SEQUENCES; erythropoiesis; terminal differentiation; adaptation; gene expression
Subjects: 500 Science > 570 Life sciences
Divisions: Biology, Preclinical Medicine > Institut für Physiologie
Depositing User: Dr. Gernot Deinzer
Date Deposited: 02 Nov 2021 09:38
Last Modified: 02 Nov 2021 09:38
URI: https://pred.uni-regensburg.de/id/eprint/40392

Actions (login required)

View Item View Item