LINEAR INDEPENDENCE RESULT FOR p-ADIC L-VALUES

Sprang, Johannes (2020) LINEAR INDEPENDENCE RESULT FOR p-ADIC L-VALUES. DUKE MATHEMATICAL JOURNAL, 169 (18). pp. 3439-3476. ISSN 0012-7094, 1547-7398

Full text not available from this repository. (Request a copy)

Abstract

The aim of this article is to provide an analogue of the Ball-Rivoal theorem for p-adic L-values of Dirichlet characters. More precisely, we prove, for a Dirichlet character x and a number field K, the formula dim(K) (K + Sigma(s+1)(i=2), L-p (i , chi omega(1-i)) K) >= (1-epsilon) log(s)/2[K:Q](1+log 2). As a by-product, we establish an asymptotic linear independence 2[K:Q](1 +log 2) result for the values of the p-adic Hurwitz zeta function.

Item Type: Article
Uncontrolled Keywords: ZETA-FUNCTION; IRRATIONALITY;
Subjects: 500 Science > 510 Mathematics
Divisions: Mathematics
Depositing User: Dr. Gernot Deinzer
Date Deposited: 05 Mar 2021 09:57
Last Modified: 05 Mar 2021 09:57
URI: https://pred.uni-regensburg.de/id/eprint/43232

Actions (login required)

View Item View Item