Sprang, Johannes (2020) LINEAR INDEPENDENCE RESULT FOR p-ADIC L-VALUES. DUKE MATHEMATICAL JOURNAL, 169 (18). pp. 3439-3476. ISSN 0012-7094, 1547-7398
Full text not available from this repository. (Request a copy)Abstract
The aim of this article is to provide an analogue of the Ball-Rivoal theorem for p-adic L-values of Dirichlet characters. More precisely, we prove, for a Dirichlet character x and a number field K, the formula dim(K) (K + Sigma(s+1)(i=2), L-p (i , chi omega(1-i)) K) >= (1-epsilon) log(s)/2[K:Q](1+log 2). As a by-product, we establish an asymptotic linear independence 2[K:Q](1 +log 2) result for the values of the p-adic Hurwitz zeta function.
| Item Type: | Article |
|---|---|
| Uncontrolled Keywords: | ZETA-FUNCTION; IRRATIONALITY; |
| Subjects: | 500 Science > 510 Mathematics |
| Divisions: | Mathematics |
| Depositing User: | Dr. Gernot Deinzer |
| Date Deposited: | 05 Mar 2021 09:57 |
| Last Modified: | 05 Mar 2021 09:57 |
| URI: | https://pred.uni-regensburg.de/id/eprint/43232 |
Actions (login required)
![]() |
View Item |

