Cerfontaine, Pascal and Botzem, Tim and Ritzmann, Julian and Humpohl, Simon Sebastian and Ludwig, Arne and Schuh, Dieter and Bougeard, Dominique and Wieck, Andreas D. and Bluhm, Hendrik (2020) Closed-loop control of a GaAs-based singlet-triplet spin qubit with 99.5% gate fidelity and low leakage. NATURE COMMUNICATIONS, 11 (1): 4144. ISSN 2041-1723,
Full text not available from this repository. (Request a copy)Abstract
Semiconductor spin qubits have recently seen major advances in coherence time and control fidelities, leading to a single-qubit performance that is on par with other leading qubit platforms. Most of this progress is based on microwave control of single spins in devices made of isotopically purified silicon. For controlling spins, the exchange interaction is an additional key ingredient which poses new challenges for high-fidelity control. Here, we demonstrate exchange-based single-qubit gates of two-electron spin qubits in GaAs double quantum dots. Using careful pulse optimization and closed-loop tuning, we achieve a randomized benchmarking fidelity of (99.50 +/- 0.04)% and a leakage rate of 0.13% out of the computational subspace. These results open new perspectives for microwave-free control of singlet-triplet qubits in GaAs and other materials.
| Item Type: | Article |
|---|---|
| Uncontrolled Keywords: | QUANTUM; NOISE; |
| Subjects: | 500 Science > 530 Physics |
| Divisions: | Physics > Institute of Experimental and Applied Physics Physics > Institute of Experimental and Applied Physics > Chair Professor Huber > Group Dominique Bougeard |
| Depositing User: | Dr. Gernot Deinzer |
| Date Deposited: | 16 Mar 2021 08:30 |
| Last Modified: | 16 Mar 2021 08:30 |
| URI: | https://pred.uni-regensburg.de/id/eprint/44003 |
Actions (login required)
![]() |
View Item |

