Anthracene-Argon Clusters Generated in Superfluid Helium Nanodroplets: New Aspects on Cluster Formation and Microsolvation

Lottner, E. M. and Slenczka, A. (2020) Anthracene-Argon Clusters Generated in Superfluid Helium Nanodroplets: New Aspects on Cluster Formation and Microsolvation. JOURNAL OF PHYSICAL CHEMISTRY A, 124 (2). pp. 311-321. ISSN 1089-5639, 1520-5215

Full text not available from this repository. (Request a copy)

Abstract

About two decades after extensive studies on anthracene-Ar-n clusters in the gas phase, we report corresponding studies in superfluid helium droplets. With AN as a small fluorophore and spectroscopic data from the gas phase and helium droplets, both the formation of clusters and the microsolvation in superfluid helium droplets can be studied. As expected for helium droplets, a significantly higher number of isomeric variants of the respective cluster sizes are obtained, because metastable variants are stabilized by the low temperature and the surrounding helium. Moreover, spectroscopic data recorded in helium droplets reveal cluster configurations with Ar atoms shielded by a helium solvation layer. Surprisingly, AN-Ar-n clusters with more than four Ar atoms do not appear to form rigid configurations. The helium droplet data in combination with the gas phase spectra may serve as a suitable reference for further theoretical investigations on solvation and cluster formation in superfluid helium droplets.

Item Type: Article
Uncontrolled Keywords: INDUCED FLUORESCENCE SPECTROSCOPY; DER-WAALS COMPLEXES; TETRACENE; MOLECULES; PHTHALOCYANINE; DROPLETS; SPECTRA; SOLVATION; JET; AR;
Subjects: 500 Science > 540 Chemistry & allied sciences
Divisions: Chemistry and Pharmacy > Institut für Physikalische und Theoretische Chemie
Chemistry and Pharmacy > Institut für Physikalische und Theoretische Chemie > Chair of Physical Chemistry I
Chemistry and Pharmacy > Institut für Physikalische und Theoretische Chemie > Chair of Physical Chemistry I > Prof. Dr. Alkwin Slenzka
Depositing User: Dr. Gernot Deinzer
Date Deposited: 01 Apr 2021 10:40
Last Modified: 01 Apr 2021 10:40
URI: https://pred.uni-regensburg.de/id/eprint/45340

Actions (login required)

View Item View Item