Haas, Johann and Lueders, Morten (2021) A local to global principle for higher zero-cycles. JOURNAL OF NUMBER THEORY, 220. pp. 235-265. ISSN 0022-314X, 1096-1658
Full text not available from this repository. (Request a copy)Abstract
We study a local to global principle for certain higher zero cycles over global fields. We thereby verify a conjecture of Colliot-Thelene for these cycles. Our main tool are the Kato conjectures proved by Jannsen, Kerz and Saito. Our approach also allows to reprove the ramified global class field theory of Kato and Saito. Finally, we apply the Kato conjectures to study the p-adic cycle class map over henselian discrete valuation rings of mixed characteristic and to deduce finiteness theorems for arithmetic schemes in low degree. (c) 2020 Elsevier Inc. All rights reserved.
| Item Type: | Article |
|---|---|
| Additional Information: | contact email-adresse von Lueders, Morten ist ur.de, aber sonst keinerlei Hinweis auf Zugehörigkeit zur Uni Regensburg .../gup |
| Uncontrolled Keywords: | CLASS FIELD-THEORY; MOTIVIC COHOMOLOGY; RESTRICTION ISOMORPHISM; K-THEORY; HOMOLOGY; DUALITY; RINGS; Chow groups; Kato conjectures; Class field theory; Local to global |
| Subjects: | 500 Science > 510 Mathematics |
| Divisions: | Mathematics |
| Depositing User: | Dr. Gernot Deinzer |
| Date Deposited: | 01 Sep 2022 08:33 |
| Last Modified: | 01 Sep 2022 08:33 |
| URI: | https://pred.uni-regensburg.de/id/eprint/47161 |
Actions (login required)
![]() |
View Item |

