On the eigenvalue accumulation of Sturm-Liouville problems depending nonlinearly on the spectral parameter

Mennicken, Reinhard and Schmid, H. and Shkalikov, A. A. (1998) On the eigenvalue accumulation of Sturm-Liouville problems depending nonlinearly on the spectral parameter. MATHEMATISCHE NACHRICHTEN, 189 (1). pp. 157-170. ISSN 0025-584X, 1522-2616

Full text not available from this repository.

Abstract

A nonlinear spectral problem for a Sturm-Liouville equation - (p(x,lambda)y'(x,lambda))' + q(x,lambda)y(x,lambda) = 0 on a finite interval [a, b] with lambda-dependent boundary conditions is considered. The spectral parameter lambda is varying in an interval Lambda and p(x, lambda), q(x,lambda) are real, continuous functions on [a, b] x Lambda. Some criteria to the eigenvalue accumulation at the endpoints of Lambda will be established. The results are applied to concrete problems ari sing in magnetohydrodynamics.

Item Type: Article
Uncontrolled Keywords: EQUATIONS; oscillatory; nonoscillatory; majorant pair; Suydams criterion
Subjects: 500 Science > 510 Mathematics
Divisions: Mathematics
Depositing User: Dr. Gernot Deinzer
Date Deposited: 01 Mar 2023 09:36
Last Modified: 01 Mar 2023 09:36
URI: https://pred.uni-regensburg.de/id/eprint/50259

Actions (login required)

View Item View Item