Luminescent sensing and imaging of oxygen: Fierce competition to the Clark electrode

Wolfbeis, Otto S. (2015) Luminescent sensing and imaging of oxygen: Fierce competition to the Clark electrode. BIOESSAYS, 37 (8). pp. 921-928. ISSN 0265-9247, 1521-1878

Full text not available from this repository. (Request a copy)

Abstract

Luminescence-based sensing schemes for oxygen have experienced a fast growth and are in the process of replacing the Clark electrode in many fields. Unlike electrodes, sensing is not limited to point measurements via fiber optic microsensors, but includes additional features such as planar sensing, imaging, and intracellular assays using nanosized sensor particles. In this essay, I review and discuss the essentials of (i) common solid-state sensor approaches based on the use of luminescent indicator dyes and host polymers; (ii) fiber optic and planar sensing schemes; (iii) nanoparticle-based intracellular sensing; and (iv) common spectroscopies. Optical sensors are also capable of multiple simultaneous sensing (such as O-2 and temperature). Sensors for O-2 are produced nowadays in large quantities in industry. Fields of application include sensing of O-2 in plant and animal physiology, in clinical chemistry, in marine sciences, in the chemical industry and in process biotechnology.

Item Type: Article
Uncontrolled Keywords: IN-VIVO; OPTICAL METHODS; SENSORS; NANOSENSORS; COMPLEXES; HYPOXIA; PROBE; fluorescence; imaging; luminescence; microsensor; nanosensor; oxygen; sensor
Subjects: 500 Science > 540 Chemistry & allied sciences
Divisions: Chemistry and Pharmacy > Institut für Analytische Chemie, Chemo- und Biosensorik > Chemo- und Biosensorik (Prof. Antje J. Bäumner, formerly Prof. Wolfbeis)
Depositing User: Dr. Gernot Deinzer
Date Deposited: 03 Jul 2019 11:32
Last Modified: 03 Jul 2019 11:32
URI: https://pred.uni-regensburg.de/id/eprint/5140

Actions (login required)

View Item View Item