Comparative Analysis between Individual, Centralized, and Federated Learning for Smartwatch Based Stress Detection

Fauzi, Muhammad Ali and Yang, Bian and Blobel, Bernd (2022) Comparative Analysis between Individual, Centralized, and Federated Learning for Smartwatch Based Stress Detection. JOURNAL OF PERSONALIZED MEDICINE, 12 (10): 1584. ISSN , 2075-4426

Full text not available from this repository. (Request a copy)

Abstract

Machine learning has been proven to provide good performances on stress detection tasks using multi-modal sensor data from a smartwatch. Generally, machine learning techniques need a sufficient amount of data to train a robust model. Thus, we need to collect data from several users and send them to a central server to feed the algorithm. However, the uploaded data may contain sensitive information that can jeopardize the user's privacy. Federated learning can tackle this challenge by enabling the model to be trained using data from all users without the user's data leaving the user's device. In this study, we implement federated learning-based stress detection and provide a comparative analysis between individual, centralized, and federated learning. The experiment was conducted on WESAD dataset by using Logistic Regression as the classifier. The experiment results show that in terms of accuracy, federated learning cannot reach the performance level of both individual and centralized learning. The individual learning strategy performs best with an average accuracy of 0.9998 and an average F-1-measure of 0.9996.

Item Type: Article
Uncontrolled Keywords: QUESTIONNAIRE; TOOL; stress detection; privacy; individual learning; centralized learning; federated learning; smartwatch; machine learning
Subjects: 600 Technology > 610 Medical sciences Medicine
Divisions: Medicine > Zentren des Universitätsklinikums Regensburg > eHealth Competence Center
Depositing User: Dr. Gernot Deinzer
Date Deposited: 27 Feb 2024 13:56
Last Modified: 27 Feb 2024 13:56
URI: https://pred.uni-regensburg.de/id/eprint/58040

Actions (login required)

View Item View Item