Ionescu, Andrei Cristian and Hahnel, Sebastian and Chiari, Marina D. S. and Koenig, Andreas and Delvecchio, Paolo and Braga, Roberto Ruggiero and Zambelli, Vanessa and Brambilla, Eugenio (2022) TEGDMA-Functionalized Dicalcium Phosphate Dihydrate Resin-Based Composites Prevent Secondary Caries in an In Vitro Biofilm Model. JOURNAL OF FUNCTIONAL BIOMATERIALS, 13 (4): 232. ISSN , 2079-4983
Full text not available from this repository. (Request a copy)Abstract
This study evaluated the efficacy of experimental TEGDMA-functionalized dicalcium phosphate dihydrate (T-DCPD) filler-based resin-based composites (RBC) in preventing caries lesions around the restoration margins (secondary caries, SC). Standardized Class-II cavities were made in sound molars with the cervical margin in dentin. Cavities were filled with a commercial resin-modified glass-ionomer cement (RMGIC) or experimental RBCs containing a bisGMA-TEGDMA resin blend and one of the following inorganic fractions: 60 wt.% Ba glass (RBC-0); 40 wt.% Ba glass and 20 wt.% T-DCPD (RBC-20); or 20 wt.% Ba glass and 40 wt.% T-DCPD (RBC-40). An open-system bioreactor produced Streptococcus mutans biofilm-driven SC. Specimens were scanned using micro-CT to evaluate demineralization depths. Scanning electron microscopy and energy-dispersive X-ray spectroscopy characterized the specimen surfaces, and antimicrobial activity, buffering effect, and ion uptake by the biofilms were also evaluated. ANOVA and Tukey's tests were applied at p < 0.05. RBC-0 and RBC-20 showed SC development in dentin, while RBC-40 and RMGIC significantly reduced the lesion depth at the restoration margin (p < 0.0001). Initial enamel demineralization could be observed only around the RBC-0 and RBC-20 restorations. Direct antibiofilm activity can explain SC reduction by RMGIC, whereas a buffering effect on the acidogenicity of biofilm can explain the behavior of RBC-40. Experimental RBC with CaP-releasing functionalized T-DCPD filler could prevent SC with the same efficacy as F-releasing materials.
| Item Type: | Article |
|---|---|
| Uncontrolled Keywords: | CALCIUM-PHOSPHATE; DENTAL COMPOSITES; ION RELEASE; NANOPARTICLES; bioreactor; secondary caries; caries model; DCPD; micro-CT |
| Subjects: | 600 Technology > 610 Medical sciences Medicine |
| Divisions: | Medicine > Lehrstuhl für Zahnärztliche Prothetik |
| Depositing User: | Dr. Gernot Deinzer |
| Date Deposited: | 27 Feb 2024 15:14 |
| Last Modified: | 27 Feb 2024 15:14 |
| URI: | https://pred.uni-regensburg.de/id/eprint/58081 |
Actions (login required)
![]() |
View Item |

