Heiland, Lukas and Kunstler, Georges and Seben, Vladimir and Huelsmann, Lisa (2023) Which demographic processes control competitive equilibria? Bayesian calibration of a size-structured forest population model. ECOLOGY AND EVOLUTION, 13 (7): e10232. ISSN 2045-7758
Full text not available from this repository. (Request a copy)Abstract
In forest communities, light competition is a key process for community assembly. Species' differences in seedling and sapling tolerance to shade cast by overstory trees is thought to determine species composition at late-successional stages. Most forests are distant from these late-successional equilibria, impeding a formal evaluation of their potential species composition. To extrapolate competitive equilibria from short-term data, we therefore introduce the JAB model, a parsimonious dynamic model with interacting size-structured populations, which focuses on sapling demography including the tolerance to overstory competition. We apply the JAB model to a two-"species" system from temperate European forests, that is, the shade-tolerant species Fagus sylvatica L. and the group of all other competing species. Using Bayesian calibration with prior information from external Slovakian national forest inventory (NFI) data, we fit the JAB model to short time series from the German NFI. We use the posterior estimates of demographic rates to extrapolate that F. sylvatica will be the predominant species in 94% of the competitive equilibria, despite only predominating in 24% of the initial states. We further simulate counterfactual equilibria with parameters switched between species to assess the role of different demographic processes for competitive equilibria. These simulations confirm the hypothesis that the higher shade tolerance of F. sylvatica saplings is key for its long-term predominance. Our results highlight the importance of demographic differences in early life stages for tree species assembly in forest communities.
| Item Type: | Article |
|---|---|
| Uncontrolled Keywords: | FAGUS-SYLVATICA L.; SHADE TOLERANCE; EUROPEAN BEECH; CLIMATE-CHANGE; PATTERNS; GROWTH; REGENERATION; TEMPERATE; MORTALITY; COMMUNITIES; dynamic model; Fagus sylvatica; monodominance; national forest inventory; natural regeneration; sapling competition; species interactions |
| Subjects: | 500 Science > 580 Botanical sciences |
| Divisions: | Biology, Preclinical Medicine > Institut für Pflanzenwissenschaften > Group Theoretical Ecology (Prof. Dr. Florian Hartig) |
| Depositing User: | Dr. Gernot Deinzer |
| Date Deposited: | 20 Mar 2024 08:42 |
| Last Modified: | 20 Mar 2024 08:42 |
| URI: | https://pred.uni-regensburg.de/id/eprint/60435 |
Actions (login required)
![]() |
View Item |

