Larson-Casey, Jennifer L. and Saleem, Komal and Surolia, Ranu and Pandey, Jyotsana and Mack, Matthias and Antony, Veena B. and Bodduluri, Sandeep and Bhatt, Surya P. and Duncan, Steven R. and Carter, A. Brent (2023) Myeloid Heterogeneity Mediates Acute Exacerbations of Pulmonary Fibrosis. JOURNAL OF IMMUNOLOGY, 211 (11). pp. 1714-1724. ISSN 0022-1767, 1550-6606
Full text not available from this repository. (Request a copy)Abstract
Epidemiological evidence indicates that exposure to particulate matter is linked to the development of idiopathic pulmonary fibrosis (IPF) and increases the incidence of acute exacerbations of IPF. In addition to accelerating the rate of lung function decline, exposure to fine particulate matter (particulate matter smaller than 2.5 lm [PM2.5]) is a risk factor for increased mortality in subjects with IPF. In this article, we show that exposure to PM2.5 mediates monocyte recruitment and fibrotic progression in mice with established fibrosis. In mice with established fibrosis, bronchoalveolar lavage cells showed monocyte/macrophage heterogeneity after exposure to PM2.5. These cells had a significant inflammatory and anti-inflammatory signature. The mixed heterogeneity of cells contributed to the proinflammatory and anti-inflammatory response. Although monocyte-derived macrophages were recruited to the lung in bleomycin-injured mice treated with PM2.5, recruitment of monocytes expressing Ly6C(hi) to the lung promoted progression of fibrosis, reduced lung aeration on computed tomography, and impacted lung compliance. Ly6C(hi) monocytes isolated from PM2.5-exposed fibrotic mice showed enhanced expression of proinflammatory markers compared with fibrotic mice exposed to vehicle. Moreover, IPF bronchoalveolar lavage cells treated ex vivo with PM2.5 showed an exaggerated inflammatory response. Targeting Ly6C(hi) monocyte recruitment inhibited fibrotic progression in mice. Moreover, the adoptive transfer of Ly6C(hi) monocytes exacerbated established fibrosis. These observations suggest that enhanced recruitment of Ly6C(hi) monocytes with a proinflammatory phenotype mediates acute exacerbations of pulmonary fibrosis, and targeting these cells may provide a potential novel therapeutic target to protect against acute exacerbations of IPF.
| Item Type: | Article |
|---|---|
| Uncontrolled Keywords: | PARTICULATE AIR-POLLUTION; FINE; MACROPHAGES; MORTALITY; EXPOSURE; DECLINE; MATTER; |
| Subjects: | 600 Technology > 610 Medical sciences Medicine |
| Divisions: | Medicine > Abteilung für Nephrologie |
| Depositing User: | Dr. Gernot Deinzer |
| Date Deposited: | 22 Apr 2024 13:00 |
| Last Modified: | 22 Apr 2024 13:00 |
| URI: | https://pred.uni-regensburg.de/id/eprint/62523 |
Actions (login required)
![]() |
View Item |

