A volume-of-fluid method for three-dimensional hexagonal solidification processes

Reitzle, M. and Kieffer-Roth, C. and Garcke, H. and Weigand, B. (2017) A volume-of-fluid method for three-dimensional hexagonal solidification processes. JOURNAL OF COMPUTATIONAL PHYSICS, 339. pp. 356-369. ISSN 0021-9991, 1090-2716

Full text not available from this repository. (Request a copy)

Abstract

A novel volume-of-fluid method to simulate three-dimensional hexagonal solidification processes is presented. The Gibbs-Thomson temperature is calculated using the weighted mean curvature and a height function technique. This boundary condition is applied directly on the sharp interface. A geometric unsplit advection scheme is used to advance the interface to the next timestep. The phase change model is validated against analytical similarity solutions in both two and three dimensions. The influence of the grid resolution on the dendritic growth is studied. Sharper dendrites for increasing resolution were found as a result of the model for the anisotropic surface energy density. Three-dimensional hexagonal growth could be achieved and constrictions were observed in both the basal and prismal planes. (C) 2017 Elsevier Inc. All rights reserved.

Item Type: Article
Uncontrolled Keywords: PHASE-FIELD SIMULATIONS; LEVEL SET SIMULATION; DENDRITIC SOLIDIFICATION; NUMERICAL-SIMULATION; FRONT-TRACKING; MEAN-CURVATURE; BINARY ALLOY; GROWTH; CONVECTION; FLOW; Volume of fluid; Ice growth; Supercooled water; Solidification; Anisotropic surface energy density; Weighted mean curvature
Subjects: 500 Science > 510 Mathematics
Divisions: Mathematics > Prof. Dr. Harald Garcke
Depositing User: Dr. Gernot Deinzer
Date Deposited: 14 Dec 2018 13:10
Last Modified: 19 Feb 2019 09:54
URI: https://pred.uni-regensburg.de/id/eprint/694

Actions (login required)

View Item View Item