Lattice QCD on nonorientable manifolds

Mages, Simon and Toth, Balint C. and Borsanyi, Szabolcs and Fodor, Zoltan and Katz, Sandor D. and Szabo, Kalman K. (2017) Lattice QCD on nonorientable manifolds. PHYSICAL REVIEW D, 95 (9): 094512. ISSN 2470-0010, 2470-0029

Full text not available from this repository. (Request a copy)

Abstract

A common problem in lattice QCD simulations on the torus is the extremely long autocorrelation time of the topological charge when one approaches the continuum limit. The reason is the suppressed tunneling between topological sectors. The problem can be circumvented by replacing the torus with a different manifold, so that the connectivity of the configuration space is changed. This can be achieved by using open boundary conditions on the fields, as proposed earlier. It has the side effect of breaking translational invariance strongly. Here we propose to use a nonorientable manifold and show how to define and simulate lattice QCD on it. We demonstrate in quenched simulations that this leads to a drastic reduction of the autocorrelation time. A feature of the new proposal is that translational invariance is preserved up to exponentially small corrections. A Dirac fermion on a nonorientable manifold poses a challenge to numerical simulations: the fermion determinant becomes complex. We propose two approaches to circumvent this problem.

Item Type: Article
Uncontrolled Keywords: GAUGE-THEORIES; BOUNDARY-CONDITIONS; TEMPERATURE;
Subjects: 500 Science > 530 Physics
Divisions: Physics > Institute of Theroretical Physics > Chair Professor Schäfer > Group Andreas Schäfer
Depositing User: Dr. Gernot Deinzer
Date Deposited: 14 Dec 2018 13:10
Last Modified: 28 Feb 2019 07:36
URI: https://pred.uni-regensburg.de/id/eprint/857

Actions (login required)

View Item View Item